

DOSSIER PROFESSIONNEL
(DP)

◢

Nom de naissance ► Fialon

Nom d’usage ►

Prénom ► Sandrine

Adresse ► 13008 Marseille

Titre professionnel visé

ADMINISTRATEUR SYSTÈME DEVOPS
Devops & Cloud Engineer

MODALITÉ D’ACCÈS :

​Parcours de formation
​ Validation des Acquis de l’Expérience (VAE)

 DOSSIER PROFESSIONNEL-Version du 01/06/2016 ​ Page 1

DOSSIER PROFESSIONNEL (DP)

 ◢

Présentation du dossier

Le dossier professionnel (DP) constitue un élément du système de validation du titre
professionnel. Ce titre est délivré par le Ministère chargé de l’emploi.

Le DP appartient au candidat. Il le conserve, l’actualise durant son parcours et le présente
obligatoirement à chaque session d’examen.

Pour rédiger le DP, le candidat peut être aidé par un formateur ou par un accompagnateur VAE.

Il est consulté par le jury au moment de la session d’examen.

Pour prendre sa décision, le jury dispose :
1.​ des résultats de la mise en situation professionnelle complétés, éventuellement, du questionnaire

professionnel ou de l’entretien professionnel ou de l’entretien technique ou du questionnement à partir de

productions.

2.​ du Dossier Professionnel (DP) dans lequel le candidat a consigné les preuves de sa pratique

professionnelle

3.​ des résultats des évaluations passées en cours de formation lorsque le candidat évalué est issu d’un

parcours de formation

4.​ de l’entretien final (dans le cadre de la session titre).

​ ​ [Arrêté du 22 décembre 2015, relatif aux conditions de délivrance des titres professionnels

du ministère chargé de l’Emploi]

Ce dossier comporte :

►​ pour chaque activité-type du titre visé, un à trois exemples de pratique professionnelle ;

►​ un tableau à renseigner si le candidat souhaite porter à la connaissance du jury la détention d’un titre,

d’un diplôme, d’un certificat de qualification professionnelle (CQP) ou des attestations de formation ;

►​ une déclaration sur l’honneur à compléter et à signer ;

►​ des documents illustrant la pratique professionnelle du candidat (facultatif)

►​ des annexes, si nécessaire.

 DOSSIER PROFESSIONNEL-Version du 01/06/2016 ​ Page 2

DOSSIER PROFESSIONNEL (DP)

 ◢

Pour compléter ce dossier, le candidat dispose d’un site web en accès libre sur le site.

◢ http://travail-emploi.gouv.fr/titres-professionnels

 DOSSIER PROFESSIONNEL-Version du 01/06/2016 ​ Page 3

http://travail-emploi.gouv.fr/titres-professionnels

DOSSIER PROFESSIONNEL (DP)

 ◢

Sommaire

Exemples de pratique professionnelle

Création de conteneurs avec Docker p. 6

 ► Conteneurisation d'une application web multi-étages ​ p. 6

 ► Création d'une image Docker personnalisée : Nginx p. 9

Teste d’intégration continue (CI) p. 11

 ► Sonar Qube Cloud : Analyse de la qualité et de la sécurité du code​ p. 11

 ► Validation de code terraform et Ansible ​ p. 13

Automatisation de déploiement - IaC p. 15

► Provisionning avec Terraform : Déploiement d'une infrastructure cloud complète ​ p. 15

► Gestion de l'infrastructure Cloud avec les CLI : AWS, Azure CLI et GCP p. 18

► Configuration avec Ansible : Déploiement du monitoring​ p. 20

► Pipeline : CI/CD de l'IaC : Planification et application automatisées p. 24

Titres, diplômes, CQP, attestations de formation (facultatif)
p. 27

Déclaration sur l’honneur
p. 28

Documents illustrant la pratique professionnelle (facultatif)
p. 29

Annexes (Si le RC le prévoit)
p. 30

 DOSSIER PROFESSIONNEL-Version du 01/06/2016 ​ Page 4

DOSSIER PROFESSIONNEL (DP)

 ◢

EXEMPLES DE PRATIQUE

PROFESSIONNELLE

 DOSSIER PROFESSIONNEL-Version du 01/06/2016 ​ Page 5

DOSSIER PROFESSIONNEL (DP)

 ◢

Activité-type 1 Création de conteneurs avec Docker

Exemple n°1 ► Conteneurisation d'une application web multi-étages

1. Décrivez les tâches ou opérations que vous avez effectuées, et dans quelles conditions :

J’ai définit dans un fichier nommé docker-compose.yml une application multi-conteneurs composée de trois
services : une base de données MariaDB (db), un backend, et un proxy Nginx.

A. Détail des services :

●​ Db (MariaDB)
Utilise l’image officielle mariadb:latest.
Les variables d’environnement (mot de passe root, nom de la base, utilisateur, mot de passe) sont injectées
via un fichier .env ou des variables d’environnement système.
Les données sont persistées dans un volume Docker nommé mysql_data pour éviter la perte de données
lors du redémarrage du conteneur.

db:
 image: mariadb:latest
 container_name: db
 restart: always
 environment:
 - MARIADB_ROOT_PASSWORD=${MARIADB_ROOT_PASSWORD}
 - MARIADB_DATABASE=${MARIADB_DATABASE}
 - MARIADB_USER=${MARIADB_USER}
 - MARIADB_PASSWORD=${MARIADB_PASSWORD}
 volumes:
 - mysql_data:/var/lib/mysql

●​ Backend

Le BackEnd est construit à partir du dossier local ./backend avec le Dockerfile spécifié.
Il reçoit les paramètres de connexion à la base de données via des variables d’environnement.
Il démarre uniquement après le conteneur db grâce à depends_on.

backend:
 build:
 context: ./backend
 dockerfile: Dockerfile
 container_name: backend
 environment:
 - DB_HOST=${DB_HOST}
 - DB_USER=${DB_USER}
 - DB_PASSWORD=${DB_PASSWORD}

 DOSSIER PROFESSIONNEL-Version du 01/06/2016 ​ Page 6

DOSSIER PROFESSIONNEL (DP)

 ◢

 - DB_NAME=${DB_NAME}
 depends_on:
 - db

●​ Proxy (Nginx)

Le proxy Nginx utilise l’image officielle nginx:latest.
Il monte un fichier de configuration Nginx local (./proxy/conf) dans le conteneur.
Puis, expose le port 80 du conteneur sur le port 80 de la machine hôte.
Et démarre après le backend.

proxy:
 image: nginx:latest
 container_name: proxy
 volumes:
 - ./proxy/conf:/etc/nginx/nginx.conf:ro
 ports:
 - "80:80"
 depends_on:
 - backend

●​ Volumes

“mysql_data”  est le volume Docker pour stocker les données de la base MariaDB de façon persistante.

volumes:
 mysql_data:

B. Résultats Obtenus

Démarrage Orchestré : La commande docker-compose up -d permet de lancer simultanément
l'intégralité des trois services dans le bon ordre (db → backend → proxy), grâce à la directive
depends_on.

Accessibilité et fonctionnalité : L'application est devenue accessible via le port 80 de la machine hôte. Le
proxy Nginx a correctement acheminé les requêtes vers le backend, qui a réussi à établir la connexion avec
la base de données MariaDB en utilisant le nom de service (db) comme hôte.

Portabilité Validée : L'ensemble de la configuration étant dans le fichier docker-compose.yml,
l'application peut être démarrée de manière identique et reproductible sur n'importe quelle machine
disposant de Docker, indépendamment du système d'exploitation hôte.

 DOSSIER PROFESSIONNEL-Version du 01/06/2016 ​ Page 7

DOSSIER PROFESSIONNEL (DP)

 ◢

2. Précisez les moyens utilisés :

-​ Docker Engine : Moteur de Conteneurisation
-​ Docker Compose : Outil d'Orchestration
-​ Images Officielles Docker : Utilisation de mariadb:latest et nginx:latest pour la rapidité et la fiabilité.
-​ Dockerfile : Fichier de Configuration qui définit l'image personnalisée du service backend (étapes de

build spécifiques : dépendances, code applicatif).
-​ Volumes Docker pour la persistance des Données
-​ Fichier .env : Utilisation pour injecter les variables d'environnement sensibles dans la configuration.

3. Avec qui avez-vous travaillé ?

J'ai mené ce projet de manière autonome, en me basant sur la documentation officielle de Docker et les
cours de ma formation pour concevoir cet exercice.

4. Contexte

Nom de l’entreprise, organisme ou association ► La Capsule

Chantier, atelier, service ► Centre de formation

Période d’exercice ► Du 22/09/2025 au 22/09/2025

5. Informations complémentaires (facultatif)

Cliquez ici pour taper du texte.

 DOSSIER PROFESSIONNEL-Version du 01/06/2016 ​ Page 8

DOSSIER PROFESSIONNEL (DP)

 ◢

Activité-type 1 Création de conteneurs avec Docker

Exemple n°2 ► Création d'une image Docker personnalisée : Nginx

1. Décrivez les tâches ou opérations que vous avez effectuées, et dans quelles conditions :

L'objectif était de créer une image Docker légère contenant un serveur web Nginx configuré pour servir une
page d'accueil personnalisée, garantissant ainsi la reproductibilité de l'environnement de service.

A. Création du Dockerfile et des Fichiers de Configuration

Sur une VM (Machine Virtuelle) Vagrant, j'ai créé un Dockerfile et défini les étapes de construction de
l'image à partir de fichiers locaux :

1.​ Image de base : utilisation de l'image nginx:stable-perl pour bénéficier d'un environnement
Nginx stable et minimal.

2.​ Configuration personnalisée : J'ai copié les fichiers locaux (default.conf, nginx.conf,

index-lacapsule.html) dans les répertoires appropriés du conteneur.

○​ Le fichier default.conf a été configuré pour écouter sur le port 81 du conteneur.
3.​ Permissions et exposition : J'ai assuré les permissions de lecture nécessaires sur le fichier HTML et

exposé le port 80 (dans le Dockerfile) pour indiquer le port de l'application.

FROM nginx:stable-perl
COPY default.conf /etc/nginx/conf.d/default.conf
COPY nginx.conf /etc/nginx/nginx.conf
COPY index-lacapsule.html /usr/share/nginx/html/index.html
RUN chmod +r /usr/share/nginx/html/index.html
EXPOSE 80

Extrait Dockerfile

B. Cycle de Vie de l'Image et du Conteneur

1.​ Construction de l'Image : L'image a été construite et taguée localement :

docker build -t nginx-lacapsule:alpha .

2.​ Lancement du Conteneur : Un conteneur nommé webserver a été lancé, exposant le port

interne 81 sur le port 8080 de la machine hôte.

docker run -d -p 8080:81 --name webserver nginx-lacapsule:alpha

3.​ Vérification : J'ai validé la bonne exécution et la personnalisation de l'image :

 DOSSIER PROFESSIONNEL-Version du 01/06/2016 ​ Page 9

DOSSIER PROFESSIONNEL (DP)

 ◢

a.​ Vérification d'accès : L'accès au serveur web sur le port 8080 de l'hôte a permis de

visualiser la page index-lacapsule.html.

b.​ Inspection des Fichiers : J'ai utilisé docker exec pour vérifier la présence des fichiers de
configuration et de la page HTML à l'intérieur du conteneur.

C. Résultats Obtenus

●​ Image optimale : Une image Docker personnalisée (nginx-lacapsule:alpha) a été créée
avec succès, ne contenant que les éléments essentiels pour servir l'application web.

●​ Accessibilité validée : L'application web a été rendue accessible à l'extérieur, validant le port
mapping entre le port d'écoute interne défini dans le default.conf (81) et le port exposé sur

l'hôte (8080).

●​ Isolation : Le conteneur fonctionne de manière isolée (docker run -d), assurant que les
dépendances et la configuration du serveur web sont indépendantes de l'environnement hôte.

2. Précisez les moyens utilisés :

●​ Docker Engine : moteur de Conteneurisation pour l’exécution des commandes Docker (build, run,
exec, images).

●​ Dockerfile : fichier de Configuration qui décrit les étapes de construction de l'image
●​ nginx:stable-perl : image parent utilisée pour la construction.
●​ Configuration Nginx : fichier .conf : personnalisation du comportement du serveur web

3. Avec qui avez-vous travaillé ?

J'ai mené ce projet de manière autonome, en me basant sur la documentation officielle de Docker et les
cours de ma formation pour concevoir cet exercice.

4. Contexte

Nom de l’entreprise, organisme ou association ► La Capsule

Chantier, atelier, service ► Atelier en Centre de formation

Période d’exercice ► Du 23/09/2025 au 23/09/2025

5. Informations complémentaires (facultatif)

Cliquez ici pour taper du texte.

 DOSSIER PROFESSIONNEL-Version du 01/06/2016 ​ Page 10

DOSSIER PROFESSIONNEL (DP)

 ◢

Activité-type 2 Teste d’intégration continue (CI)

Exemple n°2 ► Sonar Qube Cloud : Analyse de la qualité et de la sécurité du code

1. Décrivez les tâches ou opérations que vous avez effectuées, et dans quelles conditions :

SonarQube Cloud est un outil cloud en ligne qui permet de tester un répertoire git en analysant la qualité
du code et sa sécurité.

Tâches et opérations Effectuées

L'objectif principal de cette tâche était d'activer l'analyse automatique de la qualité et de la sécurité de mon
code source en utilisant l'intégration native de SonarQube Cloud avec GitHub.

Les étapes clés ont été les suivantes :

1.​ Préparation et Connexion :

J'ai créé un compte sur SonarQube Cloud, puis autorisé SonarQube à accéder à mes dépôts GitHub via
l'interface, établissant une liaison bidirectionnelle.

2.​ Configuration du Projet :

J'ai importé le projet spécifique depuis GitHub dans SonarQube Cloud.

SonarQube a automatiquement détecté le langage du code (ici JavaScript) et a configuré les règles d'analyse
par défaut.

3.​ Déclenchement de l'Analyse Automatique :

Contrairement à une intégration CI/CD manuelle, l'analyse a été déclenchée de manière automatique.

J'ai effectué des modifications de code sur mon projet et j'ai lancé un commit suivi d'un push vers le dépôt
GitHub. Chaque push sert de déclencheur pour que SonarQube Cloud récupère le code et exécute son
analyse.

4.​ Vérification et Interprétation des Résultats :

J'ai analysé les résultats sur le tableau de bord de SonarQube, en examinant le Quality Gate, Reliability
(Fiabilité, bugs), les Vulnérabilités (sécurité) et la maintenabilité du code.

 DOSSIER PROFESSIONNEL-Version du 01/06/2016 ​ Page 11

DOSSIER PROFESSIONNEL (DP)

 ◢

L'objectif est d'atteindre le 'A' pour valider la bonne santé de l'application.

De plus, l'analyse a mis en lumière les points suivants :

●​ Hotspots Review : L'outil a identifié les zones du code nécessitant une attention particulière pour la
sécurité (les Hotspots). Ces zones ont été révisées manuellement, permettant de valider qu'elles ne
présentent pas de risque de vulnérabilité.

●​ Duplications : La mesure des lignes de code répétées a fourni un pourcentage précis. La correction
des duplications a été initiée pour rendre le code plus modulaire, il en reste encore pour atteindre 0
%.

●​ Validation du Quality Gate : L'ensemble de ces métriques (notamment les notes 'A') a permis
d'obtenir le statut "Passed" (Réussi), validant que le code respecte les standards définis avant de
passer à l'étape suivante du pipeline (déploiement).

2. Précisez les moyens utilisés :

-​ SonarQube Cloud : Plateforme en ligne, d'analyse statique du code.
-​ GitHub : Hébergement du code et déclencheur des analyses.
-​ Commandes Git : git commit et git push ont servi à déclencher l'analyse.

3. Avec qui avez-vous travaillé ?

J'ai mené ce projet de manière autonome sur des projets personnels essentiellement.

4. Contexte

Nom de l’entreprise, organisme ou association ► La Capsule

Chantier, atelier, service ► Centre de formation

Période d’exercice ► Du 04/11/2025 au 21/11/2025

5. Informations complémentaires (facultatif)

 DOSSIER PROFESSIONNEL-Version du 01/06/2016 ​ Page 12

DOSSIER PROFESSIONNEL (DP)

 ◢

Activité-type 2 Teste d’intégration continue (CI)

Exemple n°2 ► Validation de code terraform et Ansible

1. Décrivez les tâches ou opérations que vous avez effectuées, et dans quelles conditions :

L'objectif de cet exercice était d'assurer la qualité, la conformité et le respect des bonnes pratiques de
l'Infrastructure-as-Code (IaC) en intégrant des outils de validation statique directement dans le flux de
développement.

Tâches et Opérations Effectuées

J'ai mis en place une routine de validation locale pour les deux composants principaux de l'IaC :

1.​ Validation Syntaxique et Structurelle (Terraform) :

J'ai systématiquement exécuté la commande terraform init en début de projet pour initialiser le
répertoire de travail, télécharger les providers nécessaires et valider la structure de base.

La commande terraform validate était exécutée après chaque modification significative des fichiers

.tf. Cette opération vérifie la cohérence syntaxique du langage HCL (HashiCorp Configuration Language)
et s'assure que les arguments, les blocs et les références entre les ressources sont corrects, sans nécessiter
de connexion à l'environnement Cloud.

Résultat : Cette étape me renvoyait soit un message de Success, soit une liste d'erreurs précises avec le
nom du fichier et le numéro de ligne.

2.​ Audit de Qualité et de Conformité (Ansible) :

J'ai utilisé l'outil ansible-lint pour analyser la qualité de mes playbooks et de mes rôles Ansible

(fichiers .yml).

Cette commande ne vérifie pas seulement la syntaxe YAML, mais applique un ensemble de règles de
bonnes pratiques (exemple : ne pas utiliser telle commande en production, utiliser des modules Ansible
spécifiques).

Exemple d'exécution : J'ai ciblé un rôle spécifique pour l'installation de Prometheus : ansible-lint
roles/prometheus/tasks/main.yml.

Résultat : Les messages d'erreur de ansible-lint me permettaient d'identifier et de corriger les failles
de style ou les potentielles erreurs de configuration avant le déploiement.

 DOSSIER PROFESSIONNEL-Version du 01/06/2016 ​ Page 13

DOSSIER PROFESSIONNEL (DP)

 ◢

2. Précisez les moyens utilisés :

●​ Terraform Code : tous les fichiers .tf
●​ Terraform CLI : exécution de init et validate pour la vérification des fichiers HCL.
●​ Ansible Playbooks & Roles : tous les fichiers .yml
●​ Ansible-lint : linter : outil Python pour l'analyse statique des fichiers YAML d'Ansible et la détection

des mauvaises pratiques.

3. Avec qui avez-vous travaillé ?

J'ai mené ce projet de manière autonome sur un projet de fin de formation.

4. Contexte

Nom de l’entreprise, organisme ou association ► La Capsule

Chantier, atelier, service ► Centre de formation

Période d’exercice ► Du 27/10/2025 au 08/11/2025

5. Informations complémentaires (facultatif)

Cliquez ici pour taper du texte.

 DOSSIER PROFESSIONNEL-Version du 01/06/2016 ​ Page 14

DOSSIER PROFESSIONNEL (DP)

 ◢

Activité-type 3 Automatisation de déploiement - IaC

Exemple n°1 ► Provisionning avec Terraform : Déploiement d'une infrastructure cloud
complète

1. Décrivez les tâches ou opérations que vous avez effectuées, et dans quelles conditions :

J'ai piloté l'intégralité de la phase de provisionnement de l'infrastructure sur AWS en utilisant Terraform,
que j'ai entièrement rédigé dans un main.tf.

A. Tâches de Conception et de Sécurité

●​ Rédaction du Code IaC : j'ai rédigé le fichier main.tf, définissant l'intégralité de l'architecture AWS
comme code.

●​ Gestion du State via Terraform Cloud : J'ai configuré un backend distant vers Terraform Cloud. Cela
garantit nativement le verrouillage de l'état (State Locking), la centralisation sécurisée des données
d'état, et la gestion des espaces de travail (Workspaces).

●​ Gestion des Clés SSH : j'ai utilisé le provider tls pour générer une paire de clés SSH (RSA 4096

bits) dynamiquement, et le provider local pour sauvegarder la clé privée (.pem) avec des

permissions restrictives (0600) sur le poste de contrôle.

resource "aws_key_pair" "cle_ssh" {
 key_name = "cle_ssh_${terraform.workspace}"
 public_key = file("${path.root}/keys/ci/cle_ssh.pem.pub")
 tags = {
 Name = "SSH Key - ${terraform.workspace}"
 }
}

Extrait du fichier main.tf

B. Provisionnement du Réseau et de l'Instance EC2

●​ Création d'une architecture réseau dédiée : j'ai provisionné une infrastructure réseau complète
incluant un VPC, un Subnet public, une Internet Gateway (IGW), et une Route Table.

●​ Sélection Dynamique de l'AMI : j'ai utilisé la source de données aws_ami pour récupérer l'ID de
l'AMI Linux.

●​ Durcissement (Hardening) du Groupe de Sécurité : j'ai créé un groupe de sécurité strict,
n'autorisant le trafic SSH (port 22) entrant qu'à partir de mon adresse IP publique spécifique (via
var.my_ip), minimisant la surface d'attaque.

●​ Provisionnement de l'Instance : j'ai créé l'instance EC2 (aws_instance) en lui assignant tous les
composants réseau et de sécurité.

 DOSSIER PROFESSIONNEL-Version du 01/06/2016 ​ Page 15

DOSSIER PROFESSIONNEL (DP)

 ◢

●​ Ouverture des droits AIM pour l’agent Cloudwatch afin de récupérer les metrics, logs et tâches de
cette instance.

resource "aws_instance" "monitoring" {
 subnet_id = var.subnet_id
 vpc_security_group_ids = [var.security_group_id]
 ami = "ami-02d7ced41dff52ebc" # Amazon Linux 2023
 instance_type = "t3.micro"
 iam_instance_profile = aws_iam_instance_profile.monitoring_profile.name

 key_name = var.ssh_key_name

 tags = {
 Name = "Prometheus-Grafana-${terraform.workspace}"
 Service = "Monitoring"
 Workspace = terraform.workspace
 AnsibleGroup = "monitoring" # Tag pour Ansible
 }
}

Extrait du fichier main.tf

C. Validation

●​ Récupération de l'IP : j'ai configuré un output pour exporter l'adresse IP publique de l'instance.
●​ Test sur la console AWS : j’ai vérifié que l’instance et les groupes de sécurité et vpc étaient bien

provisionnés.
●​ Test de Connexion : j'ai testé et validé la connexion SSH via le terminal en utilisant le fichier .pem

généré localement pour confirmer l'accès initial au serveur.

D. Résultats Obtenus

Le processus de provisionnement avec Terraform a été un succès, permettant de valider les objectifs
suivants :

●​ Infrastructure déterminée : après exécution des commandes terraform plan puis

terraform apply, l'intégralité de l'architecture (VPC, sous-réseau, Instance EC2, Groupe de
Sécurité) a été créée sur AWS de manière répétable et déterministe, comme défini dans le
main.tf.

●​ State Management Centralisé : Le fichier d'état (state file) a été stocké avec succès sur Terraform
Cloud, assurant que le suivi de l'infrastructure est centralisé, verrouillé et géré via le service web.

●​ Gestion du State via Terraform Cloud : j'ai configuré un backend distant vers Terraform Cloud. Cela
garantit nativement le verrouillage de l'état (State Locking), la centralisation sécurisée des données
d'état, et la gestion des espaces de travail (Workspaces).

 DOSSIER PROFESSIONNEL-Version du 01/06/2016 ​ Page 16

DOSSIER PROFESSIONNEL (DP)

 ◢

●​ Connectivité Validée : La connexion SSH à l'instance EC2, utilisant la paire de clés générée
dynamiquement, a été établie avec succès, validant à la fois l'accès réseau (VPC, IGW, SG) et la
liaison correcte de la clé SSH à l'instance.

●​ Intégration Future Facilitée : L'instance a été taguée avec AnsibleGroup = "monitoring",
ce qui la rend directement exploitable par Ansible pour l'étape de configuration (Exemple n°2 :
Configuration avec Ansible).

2. Précisez les moyens utilisés :

●​ Terraform Code : Fichiers .tf
●​ Terraform CLI : Exécution de init, plan, apply pour le cycle de vie de l'infrastructure.
●​ AWS : Cloud Provider : Plateforme cible pour le provisionnement des ressources (VPC, EC2, S3,

IAM).

3. Avec qui avez-vous travaillé ?

J'ai mené ce projet de manière autonome sur un projet de fin de formation.

4. Contexte

Nom de l’entreprise, organisme ou association ► La Capsule

Chantier, atelier, service ► Centre de formation

Période d’exercice ► Du 27/10/2025 au 08/11/2025

5. Informations complémentaires (facultatif)

Cliquez ici pour taper du texte.

 DOSSIER PROFESSIONNEL-Version du 01/06/2016 ​ Page 17

DOSSIER PROFESSIONNEL (DP)

 ◢

Activité-type 3 Automatisation de déploiement - IaC

Exemple n°2 ► Gestion de l'infrastructure Cloud avec les CLI : AWS, Azure CLI et GCP

1. Décrivez les tâches ou opérations que vous avez effectuées, et dans quelles conditions :

L'objectif était de maîtriser l'utilisation des outils CLI (Command Line Interface) natifs de chaque fournisseur
Cloud pour l'authentification, le déploiement et la gestion des ressources.

A. Tâches de Configuration et d'Authentification

J'ai effectué l'installation et la configuration des outils CLI sur mon poste de travail :

●​ Google Cloud (GCP) : Installation du Cloud SDK (./google-cloud-sdk/install.sh) et

configuration du compte par défaut avec gcloud init.

●​ Azure : Installation de l'Azure CLI (az cli) via brew (sur Mac) et authentification interactive via

az login pour établir une session sécurisée.
●​ AWS : J'ai vérifié la configuration de l'AWS CLI qui permet d'utiliser le même profil de sécurité que

Terraform pour les opérations manuelles.

B. Opérations Cloud (Exemple d'Hébergement Statique sur GCP)

Pour illustrer l'utilisation du CLI pour un déploiement, j'ai réalisé un exemple d'hébergement statique de
site web sur Google Cloud Storage (GCS) :

1.​ Création du Bucket : J'ai créé un bucket GCS via l'interface web, puis interagi avec lui localement.

Transfert de Fichiers : J'ai utilisé l'utilitaire gsutil (intégré au Cloud SDK) pour transférer le contenu local
vers le bucket :​

gsutil cp -r <fichier_en_local> gs://<nom_du_bucket>

Configuration de l'Hébergement : J'ai configuré la page d'index par défaut pour le bucket via gcloud
storage :​

gcloud storage buckets update gs://VOTRE-BUCKET-NAME --web-main-page-suffix index.html

2.​ Ouverture Publique : J'ai utilisé gcloud storage buckets add-iam-policy-binding
pour rendre le contenu du bucket accessible publiquement, en assignant le rôle
roles/storage.objectViewer à allUsers.

 DOSSIER PROFESSIONNEL-Version du 01/06/2016 ​ Page 18

DOSSIER PROFESSIONNEL (DP)

 ◢

C. Résultats Obtenus

●​ Validation de l'Authentification : L'authentification a été réussie sur les trois environnements
(AWS, Azure, GCP), confirmant la capacité à gérer l'accès aux ressources à partir du poste de
contrôle local.

●​ Déploiement Fonctionnel : L'hébergement statique sur Google Cloud Storage (GCS) a été un
succès. Le site web a été rendu accessible publiquement via l'URL du bucket.

●​ Maîtrise du Scripting : La preuve de concept a montré que des tâches complexes (comme la
configuration des droits IAM et des propriétés d'hébergement) peuvent être gérées intégralement
via des scripts CLI, ouvrant la voie à une automatisation plus fine des workflows CI/CD.

2. Précisez les moyens utilisés :

●​ AWS CLI
●​ Azure CLI
●​ Google Cloud SDK
●​ Zsh / Terminal : pour lancer les lignes de commandes

3. Avec qui avez-vous travaillé ?

J'ai mené ce projet de manière autonome sur ces exercices de fin de formation, en m’aidant de la
documentation en ligne des 3 providers.

4. Contexte

Nom de l’entreprise, organisme ou association ► La Capsule

Chantier, atelier, service ► Centre de formation

Période d’exercice ► Du 20/10/2025 au 27/10/2025

5. Informations complémentaires (facultatif)

Cliquez ici pour taper du texte.

 DOSSIER PROFESSIONNEL-Version du 01/06/2016 ​ Page 19

DOSSIER PROFESSIONNEL (DP)

 ◢

Activité-type 3 Automatisation de déploiement - IaC

Exemple n°3 ► Configuration avec Ansible : Déploiement du monitoring

1. Décrivez les tâches ou opérations que vous avez effectuées, et dans quelles conditions :

J’ai automatisé l’installation et la configuration d’une infrastructure de monitoring grâce à Ansible.

J’ai dédié une machine virtuelle AWS à Prometheus et Grafana, permettant la collecte, la centralisation et

la visualisation des métriques de l’ensemble de l’infrastructure.

A.​ Prometheus - installation

L’installation de Prometheus est automatisée via un rôle Ansible spécifique.

Ansible se connecte à l’hôte par SSH, télécharge le binaire officiel depuis GitHub à l’aide du module

ansible.builtin.get_url, puis installe et démarre le service.

ansible.builtin.get_url:
 url: "https://github.com/prometheus/prometheus/releases/download/v{{
prometheus_version }}/prometheus-{{ prometheus_version }}.linux-amd64.tar.gz"
 dest: /tmp/prometheus-{{ prometheus_version }}.tar.gz
 mode: '0644'
 when: not prometheus_installed.stat.exists

Extrait du fichier /ansible/roles/prometheus/tasks/install_prometheus.yml

B.​ Grafana - installation

L’installation de Grafana OSS est gérée par un second rôle Ansible.

Le rôle installe les dépendances système, ajoute la clé GPG (pour garantir l’authenticité du binaire

téléchargé), configure le dépôt officiel Grafana, puis installe et démarre le service :

Installation Grafana

- name: 3. Install dependencies for apt repository management
 ansible.builtin.apt:
 name: ['apt-transport-https', 'software-properties-common', 'wget', 'apg']
 state: present
 update_cache: true

- name: 4. Add Grafana GPG key
 ansible.builtin.apt_key:
 url: https://packages.grafana.com/gpg.key
 state: present

 DOSSIER PROFESSIONNEL-Version du 01/06/2016 ​ Page 20

DOSSIER PROFESSIONNEL (DP)

 ◢

- name: 5. Add Grafana repository
 ansible.builtin.apt_repository:
 repo: "deb https://packages.grafana.com/oss/deb stable main"
 state: present

- name: 6. Install Grafana (OSS)
 ansible.builtin.apt:
 name: grafana
 state: present
…

Extrait du fichier /ansible/roles/grafana/tasks/install_grafana.yml

C.​ Grafana - configuration des Dashboard

La configuration initiale de Grafana a nécessité plusieurs ajustements.​
Par défaut, Ansible ne permet pas de modifier le mot de passe de l’utilisateur admin.​
J’ai donc contourné cette limitation en créant un nouvel utilisateur administrateur via Ansible, avant de

réinitialiser le mot de passe admin existant.

Concernant les dashboards, j’ai d’abord tenté de créer mes propres modèles, mais j’ai rencontré des

incompatibilités avec les sources CloudWatch et quelques retards de synchronisation.​
Finalement, j’ai importé et adapté des dashboards open source déjà optimisés, en format json, pour la

surveillance des EC2 et des métriques AWS.

L’ajout automatique des datasources CloudWatch et Prometheus, ainsi que l’import des dashboards, est

également géré par Ansible via des requêtes HTTP (ansible.builtin.uri).

- name: 2f. Créer la datasource CloudWatch (via agent) ansible.builtin.uri:
 url: "http://localhost:3000/api/datasources"
 body_format: json
 body:
 name: "CloudWatch"
 type: "cloudwatch"
 access: "proxy"
 jsonData:
 authType: "ec2_iam_role"
 customMetricsNamespaces: "{{ aws_custom_metrics_namespaces }}"

- name: 3b. Importer le dashboard EC2 personnalisé dans Grafana
 ansible.builtin.uri:
 url: "http://localhost:3000/api/dashboards/import"

 DOSSIER PROFESSIONNEL-Version du 01/06/2016 ​ Page 21

DOSSIER PROFESSIONNEL (DP)

 ◢

 body_format: json
 body:
 dashboard: "{{ grafana_ec2_dashboard_json }}"
 overwrite: true
 inputs:
 - name: "DS_CLOUDWATCH"
 type: "datasource"
 pluginId: "cloudwatch"
 value: "CloudWatch"
 status_code: [200, 201]
 register: grafana_ec2_dashboard_result
…

Extrait du fichier /ansible/roles/grafana/tasks/add_dashboard_inline.yml

Les dashboards Grafana offrent ensuite une vue en temps réel sur l’état des instances EC2, des bases RDS,

et des métriques collectées via Prometheus.

L’interface est accessible via le port 3000 : http://<IP_VM_PUBLIC>:3000.

 DOSSIER PROFESSIONNEL-Version du 01/06/2016 ​ Page 22

DOSSIER PROFESSIONNEL (DP)

 ◢

Extraits de Dashboards – CloudWatch sur plusieurs instances EC2

Ce dashboard (capture d’écran ci-dessus) permet de visualiser en temps réel l’activité des instances EC2,

notamment les variations de CPU, mémoire, réseau et stockage.

On distingue clairement des pics d’activité inhabituels sur l’instance publique de monitoring, observés

autour de 7h du matin. Ils correspondent probablement à des tentatives d’accès externes automatisées sur

les ports SSH ou HTTP, un phénomène courant pour les instances exposées sur Internet.

D.​ Axes d’amélioration du Monitoring

Une évolution pertinente serait de remplacer les identifiants techniques des instances par leurs noms

explicites dans le dashboard CloudWatch EC2, afin de rendre la supervision plus claire et plus intuitive pour

l’équipe.

2. Précisez les moyens utilisés :

●​ Ansible : outil de configuration de l'intégralité du déploiement
●​ Prometheus et Grafana : logiciels cibles
●​ SSH (Clé Privée) : Méthode utilisée par Ansible pour se connecter à l'hôte EC2 (via la clé générée par

Terraform).

3. Avec qui avez-vous travaillé ?

J'ai mené ce projet de manière autonome, ce qui m'a permis de démontrer ma capacité à gérer l'intégralité
du cycle de vie de l'automatisation.

J'ai principalement utilisé la documentation officielle d'Ansible comme référence technique principale,
garantissant l'application des bonnes pratiques et des modules canoniques.

En complément de mon travail autonome, j'ai eu recours à Copilot, l'agent IA sur VSCode. Cet outil
d'assistance a été essentiel pour expliquer des concepts complexes et effectuer une vérification syntaxique
et logique rapide du code YAML. L'intégration de cet outil moderne a permis d'améliorer la qualité du code
et d'accélérer le processus de débogage.

4. Contexte

Nom de l’entreprise, organisme ou association ► La Capsule

Chantier, atelier, service ► Centre de formation

 DOSSIER PROFESSIONNEL-Version du 01/06/2016 ​ Page 23

DOSSIER PROFESSIONNEL (DP)

 ◢

Période d’exercice ► Du 27/10/2025 au 08/11/2025

5. Informations complémentaires (facultatif)

Cliquez ici pour taper du texte.

Activité-type 3 Automatisation de déploiement - IaC

Exemple n°4 ► Pipeline : CI/CD de l'IaC : Planification et application automatisées

1. Décrivez les tâches ou opérations que vous avez effectuées, et dans quelles conditions :

Tous les éléments de l'IaC (Terraform pour le provisionnement et Ansible pour la configuration) sont liés et
exécutés séquentiellement au sein du même pipeline CI/CD.

A.​ Validation : Tests intégrés

J’ai mis en place des tests automatisés lors de l’intégration continue via GitLab CI.
À chaque merge sur la branche staging, la pipeline exécute automatiquement la validation du code
Terraform et Ansible, afin de détecter toute erreur de syntaxe ou de configuration avant le déploiement,
afin d’empêcher de merger du code cassé.

Terraform Ansible

terraform-validate:
 stage: validate
 only:
 refs:
 - merge_requests
 script:
 - cd terraform
 - terraform init -input=false
 - terraform validate

ansible-validate:
 stage: validate
 only:
 refs:
 - merge_requests
 script: …
 - ansible-playbook -i inventories/staging.yml
site.yml --syntax-check --check --vault-password-file
.vault_pass
 - rm .vault_pass

Extrait du fichier .gitlab-ci.yml

 DOSSIER PROFESSIONNEL-Version du 01/06/2016 ​ Page 24

DOSSIER PROFESSIONNEL (DP)

 ◢

B.​ Déploiement : Lancement des script d’automatisation et de configuration

Ces jobs ne s’exécutent que sur les branches staging ou main, et seulement manuellement pour plus de
sécurité.
Terraform – Déploiement de l’infrastructure
Le terraform va créer les instances, les groupes de sécurité et tout le réseau de l’application.

terraform:
 stage: deploy
 rules:
 - if: '$CI_COMMIT_REF_NAME == "staging" || $CI_COMMIT_REF_NAME == "main"'
 when: manual
 script:
 - terraform plan -input=false -out=tfplan
 - terraform apply -input=false -auto-approve tfplan

Extrait du fichier .gitlab-ci.yml

Ansible va ensuite configurer les machines, le monitoring, installer et lancer l’application en la connectant
aux bases de données.

- ansible-playbook -i inventories/$TF_WORKSPACE.yml site.yml --vault-password-file .vault_pass

Extrait du fichier .gitlab-ci.yml

2. Précisez les moyens utilisés :

●​ GitLab CI : Moteur d'automatisation des tâches, orchestrant l'intégralité du pipeline (Validation,
Déploiement).

●​ Fichier .gitlab-ci.yml : Fichier YAML décrivant les étapes (stages), les tâches (jobs) et les règles
d'exécution.

●​ Terraform CLI : Outils IaC exécuté dans le pipeline pour les commandes validate, plan et apply pour
lancer les tâches du main.tf

●​ Ansible : Outil de configuration exécuté dans le pipeline pour la configuration des hôtes via les
playbooks.

3. Avec qui avez-vous travaillé ?

J'ai mené ce projet de manière autonome sur un projet de fin de formation.

 DOSSIER PROFESSIONNEL-Version du 01/06/2016 ​ Page 25

DOSSIER PROFESSIONNEL (DP)

 ◢

4. Contexte

Nom de l’entreprise, organisme ou association ► La Capsule

Chantier, atelier, service ► Centre de formation

Période d’exercice ► Du 27/10/2025 au 08/11/2025

5. Informations complémentaires (facultatif)

Cliquez ici pour taper du texte.

 DOSSIER PROFESSIONNEL-Version du 01/06/2016 ​ Page 26

DOSSIER PROFESSIONNEL (DP)

 ◢

Titres, diplômes, CQP, attestations de formation

(facultatif)

Intitulé Autorité ou organisme Date

Concepteur-Développeur d’Applications Web

& Mobile

La Capsule 2023

 DOSSIER PROFESSIONNEL-Version du 01/06/2016 ​ Page 27

DOSSIER PROFESSIONNEL (DP)

 ◢

Déclaration sur l’honneur

Je soussigné(e) [prénom et nom] ​ ,

déclare sur l’honneur que les renseignements fournis dans ce dossier sont exacts et que je

suis l’auteur(e) des réalisations jointes.

Fait à ​ le ​

pour faire valoir ce que de droit.

Signature :

SF

 DOSSIER PROFESSIONNEL-Version du 01/06/2016 ​ Page 28

DOSSIER PROFESSIONNEL (DP)

 ◢

Documents illustrant la pratique professionnelle

(facultatif)

Intitulé

Cliquez ici pour taper du texte.

 DOSSIER PROFESSIONNEL-Version du 01/06/2016 ​ Page 29

DOSSIER PROFESSIONNEL (DP)

 ◢

ANNEXES

(Si le RC le prévoit)

 DOSSIER PROFESSIONNEL-Version du 01/06/2016 ​ Page 30

	B. Résultats Obtenus
	A. Création du Dockerfile et des Fichiers de Configuration
	B. Cycle de Vie de l'Image et du Conteneur
	C. Résultats Obtenus
	L'objectif de cet exercice était d'assurer la qualité, la conformité et le respect des bonnes pratiques de l'Infrastructure-as-Code (IaC) en intégrant des outils de validation statique directement dans le flux de développement.
	Tâches et Opérations Effectuées

	J'ai mis en place une routine de validation locale pour les deux composants principaux de l'IaC :
	1.​Validation Syntaxique et Structurelle (Terraform) :
	2.​Audit de Qualité et de Conformité (Ansible) :
	J'ai utilisé l'outil ansible-lint pour analyser la qualité de mes playbooks et de mes rôles Ansible (fichiers .yml).
	Cette commande ne vérifie pas seulement la syntaxe YAML, mais applique un ensemble de règles de bonnes pratiques (exemple : ne pas utiliser telle commande en production, utiliser des modules Ansible spécifiques).
	J'ai piloté l'intégralité de la phase de provisionnement de l'infrastructure sur AWS en utilisant Terraform, que j'ai entièrement rédigé dans un main.tf.
	A. Tâches de Configuration et d'Authentification

